Fast algorithm for bandstructure calculation in silicon nanowires using supercell approach
نویسندگان
چکیده
Energy bandstructure in silicon nanowires with [100] crystal orientation is calculated using the Tight-Binding (TB) model with supercell approach. Numerical methods are designed according to the physical model to reach an optimal computational performance. Computation results show that the bandstructures of silicon nanowires deviate from that of bulk silicon. The efficiency and accuracy of the TB algorithm are analysed and compared to its counterpart – the Density Functional Theory (DFT). Test examples show that TB delivers a good accuracy while far superior over DFT in terms of computational cost.
منابع مشابه
The electronic structure and transmission characteristics of disordered AlGaAs nanowires
Perfect nanowires may be studied from both the bandstructure and transmission perspectives, and relating features in one set of curves to those in another often yields much insight into their behavior. For random-alloy nanowires, however, only transmission characteristics and virtual-crystal approximation (VCA) bands have been available. This is a serious shortcoming since the VCA cannot proper...
متن کاملAtomistic Analysis of Thermoelectric Properties of Silicon Nanowires
The spds-spin-orbit-coupled tight-binding model and linearized Boltzmann transport theory is applied to calculate the electrical conductivity, the Seebeck coefficient, and the power factor of silicon nanowires (NWs) with diameters D<12nm. Using experimentally measured values for the lattice thermal conductivity we estimate the room temperature thermoelectric figure of merit to be ZT~1. Keywords...
متن کاملElectronic structure and transmission characteristics of SiGe nanowires
Atomistic disorder such as alloy disorder, surface roughness and inhomogeneous strain are known to influence electronic structure and charge transport. Scaling of device dimensions to the nanometer regime enhances the effects of disorder on device characteristics and the need for atomistic modeling arises. In this work SiGe alloy nanowires are studied from two different points of view: (1) Elec...
متن کاملCalculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملConfinement-induced carrier mobility increase in nanowires by quantization of warped bands
We calculate the transport characteristics of thin silicon nanowires (NWs) up to 12 nm in diameter. The spds -spin–orbit–coupled atomistic tight-binding (TB) model is used for the electronic structure calculation. Linearized Boltzmann transport theory is applied for transport, including carrier scattering by phonons and surface roughness (SRS). We show that for certain transport orientations, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCSE
دوره 2 شماره
صفحات -
تاریخ انتشار 2006